Search results
Results from the WOW.Com Content Network
Weight normalization (WeightNorm) [18] is a technique inspired by BatchNorm that normalizes weight matrices in a neural network, rather than its activations. One example is spectral normalization , which divides weight matrices by their spectral norm .
Another possible reason for the success of batch normalization is that it decouples the length and direction of the weight vectors and thus facilitates better training. By interpreting batch norm as a reparametrization of weight space, it can be shown that the length and the direction of the weights are separated and can thus be trained separately.
Note that in Oja's original paper, [1] p=2, corresponding to quadrature (root sum of squares), which is the familiar Cartesian normalization rule. However, any type of normalization, even linear, will give the same result without loss of generality .
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Also known as min-max scaling or min-max normalization, rescaling is the simplest method and consists in rescaling the range of features to scale the range in [0, 1] or [−1, 1]. Selecting the target range depends on the nature of the data. The general formula for a min-max of [0, 1] is given as: [3]
Scaling of Navier–Stokes equation refers to the process of selecting the proper spatial scales – for a certain type of flow – to be used in the non-dimensionalization of the equation. Since the resulting equations need to be dimensionless, a suitable combination of parameters and constants of the equations and flow (domain ...
In such methods, during each training iteration, each neural network weight receives an update proportional to the partial derivative of the loss function with respect to the current weight. [1] The problem is that as the network depth or sequence length increases, the gradient magnitude typically is expected to decrease (or grow uncontrollably ...
A flow-based generative model is a generative model used in machine learning that explicitly models a probability distribution by leveraging normalizing flow, [1] [2] [3] which is a statistical method using the change-of-variable law of probabilities to transform a simple distribution into a complex one.