Search results
Results from the WOW.Com Content Network
In graph theory, a branch of mathematics, a skew-symmetric graph is a directed graph that is isomorphic to its own transpose graph, the graph formed by reversing all of its edges, under an isomorphism that is an involution without any fixed points. Skew-symmetric graphs are identical to the double covering graphs of bidirected graphs.
In the older notion of nonparametric skew, defined as () /, where is the mean, is the median, and is the standard deviation, the skewness is defined in terms of this relationship: positive/right nonparametric skew means the mean is greater than (to the right of) the median, while negative/left nonparametric skew means the mean is less than (to ...
Additional families of symmetric graphs with an even number of vertices 2n, are the evenly split complete bipartite graphs K n,n and the crown graphs on 2n vertices. Many other symmetric graphs can be classified as circulant graphs (but not all). The Rado graph forms an example of a symmetric graph with infinitely many vertices and infinite degree.
Self-complementary graph; In mathematics, especially linear algebra, and in theoretical physics, the adjective antisymmetric (or skew-symmetric) is used for matrices, tensors, and other objects that change sign if an appropriate operation (e.g. matrix transposition) is performed. See: Skew-symmetric matrix (a matrix A for which A T = −A)
A skew-symmetric graph is the double covering graph of a bidirected graph. A bidirected graph may be regarded as an orientation of a signed graph, similarly to how a directed graph may be viewed as an orientation of an ordinary undirected graph.
Any square matrix can uniquely be written as sum of a symmetric and a skew-symmetric matrix. This decomposition is known as the Toeplitz decomposition. Let Mat n {\displaystyle {\mbox{Mat}}_{n}} denote the space of n × n {\displaystyle n\times n} matrices.
Real skew-symmetric matrices are normal matrices (they commute with their adjoints) and are thus subject to the spectral theorem, which states that any real skew-symmetric matrix can be diagonalized by a unitary matrix. Since the eigenvalues of a real skew-symmetric matrix are imaginary, it is not possible to diagonalize one by a real matrix.
The symmetrization and antisymmetrization of a bilinear map are bilinear; thus away from 2, every bilinear form is a sum of a symmetric form and a skew-symmetric form, and there is no difference between a symmetric form and a quadratic form. At 2, not every form can be decomposed into a symmetric form and a skew-symmetric form.