enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Centrifugal force - Wikipedia

    en.wikipedia.org/wiki/Centrifugal_force

    Even in calculations requiring high precision, the centrifugal force is generally not explicitly included, but rather lumped in with the gravitational force: the strength and direction of the local "gravity" at any point on the Earth's surface is actually a combination of gravitational and centrifugal forces. However, the fictitious forces can ...

  3. Artificial gravity - Wikipedia

    en.wikipedia.org/wiki/Artificial_gravity

    Thus, the "gravity" force felt by an object is the centrifugal force perceived in the rotating frame of reference as pointing "downwards" towards the hull. By Newton's Third Law , the value of little g (the perceived "downward" acceleration) is equal in magnitude and opposite in direction to the centripetal acceleration.

  4. History of centrifugal and centripetal forces - Wikipedia

    en.wikipedia.org/wiki/History_of_centrifugal_and...

    Since the centrifugal force of the parts of the earth, arising from the earth's diurnal motion, which is to the force of gravity as 1 to 289, raises the waters under the equator to a height exceeding that under the poles by 85472 Paris feet, as above, in Prop. XIX., the force of the sun, which we have now shewed to be to the force of gravity as ...

  5. Inertial frame of reference - Wikipedia

    en.wikipedia.org/wiki/Inertial_frame_of_reference

    The force F is the vector sum of all "real" forces on the particle, such as contact forces, electromagnetic, gravitational, and nuclear forces. In contrast, Newton's second law in a rotating frame of reference (a non-inertial frame of reference ), rotating at angular rate Ω about an axis, takes the form:

  6. Absolute rotation - Wikipedia

    en.wikipedia.org/wiki/Absolute_rotation

    If the two do not agree, to obtain agreement, one must include a centrifugal force in the tension calculation; for example, if the spheres appear to be stationary, but the tension is non-zero, the entire tension is due to centrifugal force. From the necessary centrifugal force, one can determine one's speed of rotation; for example, if the ...

  7. Non-inertial reference frame - Wikipedia

    en.wikipedia.org/wiki/Non-inertial_reference_frame

    Common examples of this include the Coriolis force and the centrifugal force. In general, the expression for any fictitious force can be derived from the acceleration of the non-inertial frame. [ 6 ] As stated by Goodman and Warner, "One might say that F = m a holds in any coordinate system provided the term 'force' is redefined to include the ...

  8. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    The SI unit of force is the newton (symbol N), which is the force required to accelerate a one kilogram mass at a rate of one meter per second squared, or kg·m·s −2.The corresponding CGS unit is the dyne, the force required to accelerate a one gram mass by one centimeter per second squared, or g·cm·s −2. A newton is thus equal to ...

  9. Coriolis force - Wikipedia

    en.wikipedia.org/wiki/Coriolis_force

    The rotation has caused the planet to settle on a spheroid shape, such that the normal force, the gravitational force and the centrifugal force exactly balance each other on a "horizontal" surface. (See equatorial bulge.) The Coriolis effect caused by the rotation of the Earth can be seen indirectly through the motion of a Foucault pendulum.