Ads
related to: basic properties of squares examples math questions pdf printable
Search results
Results from the WOW.Com Content Network
Variables allow one to describe some mathematical properties. For example, a basic property of addition is commutativity which states that the order of numbers being added together does not matter. Commutativity is stated algebraically as ( a + b ) = ( b + a ) {\displaystyle (a+b)=(b+a)} .
The square of an integer may also be called a square number or a perfect square. In algebra, the operation of squaring is often generalized to polynomials, other expressions, or values in systems of mathematical values other than the numbers. For instance, the square of the linear polynomial x + 1 is the quadratic polynomial (x + 1) 2 = x 2 ...
An example is the function that relates each real number x to its square x 2. The output of a function f corresponding to an input x is denoted by f(x) (read "f of x"). In this example, if the input is −3, then the output is 9, and we may write f(−3) = 9. The input variable(s) are sometimes referred to as the argument(s) of the function.
In mathematics, the difference of two squares is a squared (multiplied by itself) number subtracted from another squared number. Every difference of squares may be factored according to the identity a 2 − b 2 = ( a + b ) ( a − b ) {\displaystyle a^{2}-b^{2}=(a+b)(a-b)}
Congruences of squares are extremely useful in integer factorization algorithms. Conversely, because finding square roots modulo a composite number turns out to be probabilistic polynomial-time equivalent to factoring that number, any integer factorization algorithm can be used efficiently to identify a congruence of squares.
Animation depicting the process of completing the square. (Details, animated GIF version)In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form + + to the form + for some values of and . [1]
Ads
related to: basic properties of squares examples math questions pdf printable