Search results
Results from the WOW.Com Content Network
Niels Henrik David Bohr (7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922.
The Bohr model of the hydrogen atom (Z = 1) or a hydrogen-like ion (Z > 1), where the negatively charged electron confined to an atomic shell encircles a small, positively charged atomic nucleus and where an electron jumps between orbits, is accompanied by an emitted or absorbed amount of electromagnetic energy (hν). [1]
The Copenhagen interpretation is a collection of views about the meaning of quantum mechanics, stemming from the work of Niels Bohr, Werner Heisenberg, Max Born, and others. The term "Copenhagen interpretation" was apparently coined by Heisenberg during the 1950s to refer to ideas developed in the 1925–1927 period, glossing over his ...
Bohr considered one of the foundational truths of quantum mechanics to be the fact that setting up an experiment to measure one quantity of a pair, for instance the position of an electron, excludes the possibility of measuring the other, yet understanding both experiments is necessary to characterize the object under study. In Bohr's view, the ...
A quantum jump is the abrupt transition of a quantum system (atom, molecule, atomic nucleus) from one quantum state to another, from one energy level to another. When the system absorbs energy, there is a transition to a higher energy level (); when the system loses energy, there is a transition to a lower energy level.
The Niels Bohr Institute in Copenhagen, which was a focal point for researchers in quantum mechanics and related subjects in the 1920s and 1930s. Most of the world's best known theoretical physicists spent time there. Bohr, Heisenberg, and others tried to explain what these experimental results and mathematical models really mean.
The Bell test has its origins in the debate between Einstein and other pioneers of quantum physics, principally Niels Bohr. One feature of the theory of quantum mechanics under debate was the meaning of Heisenberg's uncertainty principle. This principle states that if some information is known about a given particle, there is some other ...
The theory would have correctly explained the Zeeman effect, except for the issue of electron spin. Sommerfeld's model was much closer to the modern quantum mechanical picture than Bohr's. In the 1950s Joseph Keller updated Bohr–Sommerfeld quantization using Einstein's interpretation of 1917, [6] now known as Einstein–Brillouin–Keller method.