enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Series and parallel circuits - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_circuits

    A series circuit with a voltage source (such as a battery, or in this case a cell) and three resistance units. Two-terminal components and electrical networks can be connected in series or parallel. The resulting electrical network will have two terminals, and itself can participate in a series or parallel topology.

  3. Capacitor - Wikipedia

    en.wikipedia.org/wiki/Capacitor

    The capacitors each store instantaneous charge build-up equal to that of every other capacitor in the series. The total voltage difference from end to end is apportioned to each capacitor according to the inverse of its capacitance. The entire series acts as a capacitor smaller than any of its components.

  4. LC circuit - Wikipedia

    en.wikipedia.org/wiki/LC_circuit

    In the series configuration of the LC circuit, the inductor (L) and capacitor (C) are connected in series, as shown here. The total voltage V across the open terminals is simply the sum of the voltage across the inductor and the voltage across the capacitor.

  5. RC time constant - Wikipedia

    en.wikipedia.org/wiki/RC_time_constant

    The following formulae use it, assuming a constant voltage applied across the capacitor and resistor in series, to determine the voltage across the capacitor against time: Charging toward applied voltage (initially zero voltage across capacitor, constant V 0 across resistor and capacitor together) V 0 : V ( t ) = V 0 ( 1 − e − t / τ ...

  6. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    DC Circuit equations AC Circuit equations Series circuit equations RC circuits: Circuit equation + = Capacitor charge = (/) ... Capacitor discharge = ...

  7. RC circuit - Wikipedia

    en.wikipedia.org/wiki/RC_circuit

    These equations can be rewritten in terms of charge and current using the relationships C = ⁠ Q / V ⁠ and V = IR (see Ohm's law). Thus, the voltage across the capacitor tends towards V as time passes, while the voltage across the resistor tends towards 0, as shown in the figures. This is in keeping with the intuitive point that the ...

  8. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    The equation is a good approximation if d is small compared to the other dimensions of the plates so that the electric field in the capacitor area is uniform, and the so-called fringing field around the periphery provides only a small contribution to the capacitance.

  9. Equivalent impedance transforms - Wikipedia

    en.wikipedia.org/wiki/Equivalent_impedance...

    These include resistors in series, resistors in parallel and the extension to series and parallel circuits for capacitors, inductors and general impedances. Also well known are the Norton and Thévenin equivalent current generator and voltage generator circuits respectively, as is the Y-Δ transform. None of these are discussed in detail here ...