enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of x is the power to which e would have to be raised to equal x. For example, ln 7.5 is 2.0149..., because e 2.0149... = 7.5. The natural logarithm of e itself, ln e, is 1, because e 1 = e, while the natural logarithm of 1 is 0, since e 0 = 1. The natural logarithm can be defined for any positive real number a as the area ...

  3. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    ln(r) is the standard natural logarithm of the real number r. Arg(z) is the principal value of the arg function; its value is restricted to (−π, π]. It can be computed using Arg(x + iy) = atan2(y, x). Log(z) is the principal value of the complex logarithm function and has imaginary part in the range (−π, π].

  4. Log–log plot - Wikipedia

    en.wikipedia.org/wiki/Log–log_plot

    A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).

  5. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    Here M(x, y) denotes the arithmetic–geometric mean of x and y. It is obtained by repeatedly calculating the average (x + y)/2 (arithmetic mean) and (geometric mean) of x and y then let those two numbers become the next x and y. The two numbers quickly converge to a common limit which is the value of M(x, y). m is chosen such that

  6. Natural logarithm of 2 - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm_of_2

    In a third layer, the logarithms of rational numbers r = ⁠ a / b ⁠ are computed with ln(r) = ln(a) − ln(b), and logarithms of roots via ln n √ c = ⁠ 1 / n ⁠ ln(c).. The logarithm of 2 is useful in the sense that the powers of 2 are rather densely distributed; finding powers 2 i close to powers b j of other numbers b is comparatively easy, and series representations of ln(b) are ...

  7. Logarithmic integral function - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_integral_function

    Plot of the logarithmic integral function li(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D. In mathematics, the logarithmic integral function or integral logarithm li(x) is a special function. It is relevant in problems of physics and has number theoretic significance.

  8. Euler's constant - Wikipedia

    en.wikipedia.org/wiki/Euler's_constant

    The area of the blue region converges to Euler's constant. Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (γ), defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:

  9. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    The graph always lies above the x-axis, but becomes arbitrarily close to it for large negative x; thus, the x-axis is a horizontal asymptote. The equation d d x e x = e x {\displaystyle {\tfrac {d}{dx}}e^{x}=e^{x}} means that the slope of the tangent to the graph at each point is equal to its height (its y -coordinate) at that point.