Search results
Results from the WOW.Com Content Network
The values below are standard apparent reduction potentials (E°') for electro-biochemical half-reactions measured at 25 °C, 1 atmosphere and a pH of 7 in aqueous solution. [1] [2] The actual physiological potential depends on the ratio of the reduced (Red) and oxidized (Ox) forms according to the Nernst equation and the thermal voltage.
In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...
Since Δ r G o = -nFE o, the electrode potential is a representation of the Gibbs energy change for the given reduction. The sum of the Gibbs energy changes for subsequent reductions (e.g. from O 2 to H 2 O 2, then from H 2 O 2 to H 2 O) is the same as the Gibbs energy change for the overall reduction (i.e. from O 2 to H 2 O), in accordance ...
The international pictogram for oxidizing chemicals. Dangerous goods label for oxidizing agents. An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent (called the reductant, reducer, or electron donor).
Reducing agents and oxidizing agents are the ones responsible for corrosion, which is the "degradation of metals as a result of electrochemical activity". [3] Corrosion requires an anode and cathode to take place. The anode is an element that loses electrons (reducing agent), thus oxidation always occurs in the anode, and the cathode is an ...
The larger the value of the standard reduction potential, the easier it is for the element to be reduced (gain electrons); in other words, they are better oxidizing agents. For example, F 2 has a standard reduction potential of +2.87 V and Li + has −3.05 V: F 2 (g) + 2 e − ⇌ 2 F − = +2.87 V Li + + e − ⇌ Li (s) = −3.05 V
The data below tabulates standard electrode potentials (E°), in volts relative to the standard hydrogen electrode (SHE), at: Temperature 298.15 K (25.00 °C; 77.00 °F); Effective concentration (activity) 1 mol/L for each aqueous or amalgamated (mercury-alloyed) species;
i.e., alkali metals > alkaline earth metals, the same as the reverse order of the (gas-phase) ionization energies . This is borne out by the extraction of metallic lithium by the electrolysis of a eutectic mixture of lithium chloride and potassium chloride : lithium metal is formed at the cathode, not potassium.