Search results
Results from the WOW.Com Content Network
The g-force acting on an object under acceleration can be much greater than 1 g, for example, the dragster pictured at top right can exert a horizontal g-force of 5.3 when accelerating. The g-force acting on an object under acceleration may be downwards, for example when cresting a sharp hill on a roller coaster.
Peak acceleration of fastest rocket sled run [14] 1964 m/s 2: 200 g: 3.5" hard disc non-operating shock tolerance for 2 ms, weight 0.6 kg [15] 2098 m/s 2: 214 g: Highest recorded amount of g-force exposed and survived by a human (Peak deceleration experienced by Kenny Bräck in a crash at the 2003 Chevy 500) [16] [17] 2256 m/s 2: 230 g
The 20 g centrifuge at the NASA Ames Research Center. High-g training is done by aviators and astronauts who are subject to high levels of acceleration ('g'). It is designed to prevent a g-induced loss of consciousness (g-LOC), a situation when the action of g-forces moves the blood away from the brain to the extent that consciousness is lost.
The weight of an object on Earth's surface is the downwards force on that object, given by Newton's second law of motion, or F = m a (force = mass × acceleration). Gravitational acceleration contributes to the total gravity acceleration, but other factors, such as the rotation of Earth, also contribute, and, therefore, affect the weight of the ...
For free bodies, the specific force is the cause of, and a measure of, the body's proper acceleration. The acceleration of an object free falling towards the earth depends on the reference frame (it disappears in the free-fall frame, also called the inertial frame), but any g-force "acceleration" will be present in all frames.
The gravitational acceleration vector depends only on how massive the field source is and on the distance 'r' to the sample mass . It does not depend on the magnitude of the small sample mass. This model represents the "far-field" gravitational acceleration associated with a massive body.
Peak ground acceleration can be expressed in fractions of g (the standard acceleration due to Earth's gravity, equivalent to g-force) as either a decimal or percentage; in m/s 2 (1 g = 9.81 m/s 2); [7] or in multiples of Gal, where 1 Gal is equal to 0.01 m/s 2 (1 g = 981 Gal).
showing gravity force and contact force commonly referred to as the g-force. G-forces (gravitational forces) create the so-called "butterfly" sensation felt as a car goes down a gradient. An acceleration of 1 standard gravity (9.8 m/s 2) is the usual force of Earth's gravitational pull exerted on a person while