Search results
Results from the WOW.Com Content Network
For example, the best case for a simple linear search on a list occurs when the desired element is the first element of the list. Development and choice of algorithms is rarely based on best-case performance: most academic and commercial enterprises are more interested in improving average-case complexity and worst-case performance. Algorithms ...
Consider finding a shortest path for traveling between two cities by car, as illustrated in Figure 1. Such an example is likely to exhibit optimal substructure. That is, if the shortest route from Seattle to Los Angeles passes through Portland and then Sacramento, then the shortest route from Portland to Los Angeles must pass through Sacramento too.
For example, let us multiply matrices A, B and C. Let us assume that their dimensions are m×n, n×p, and p×s, respectively. Matrix A×B×C will be of size m×s and can be calculated in two ways shown below: Ax(B×C) This order of matrix multiplication will require nps + mns scalar multiplications.
Since algorithms are platform-independent (i.e. a given algorithm can be implemented in an arbitrary programming language on an arbitrary computer running an arbitrary operating system), there are additional significant drawbacks to using an empirical approach to gauge the comparative performance of a given set of algorithms. Take as an example ...
Several algorithms based on depth-first search compute strongly connected components in linear time.. Kosaraju's algorithm uses two passes of depth-first search. The first, in the original graph, is used to choose the order in which the outer loop of the second depth-first search tests vertices for having been visited already and recursively explores them if not.
In computational complexity theory, a polynomial-time reduction is a method for solving one problem using another. One shows that if a hypothetical subroutine solving the second problem exists, then the first problem can be solved by transforming or reducing it to inputs for the second problem and calling the subroutine one or more times.
It starts from an assumption about a probabilistic distribution of the set of all possible inputs. This assumption is then used to design an efficient algorithm or to derive the complexity of a known algorithm. This approach is not the same as that of probabilistic algorithms, but the two may be combined.
Typically, amortized analysis is used in combination with a worst case assumption about the input sequence. With this assumption, if X is a type of operation that may be performed by the data structure, and n is an integer defining the size of the given data structure (for instance, the number of items that it contains), then the amortized time for operations of type X is defined to be the ...