Search results
Results from the WOW.Com Content Network
Most temperature-sensitive mutations affect proteins, and cause loss of protein function at the non-permissive temperature. The permissive temperature is one at which the protein typically can fold properly, or remain properly folded. At higher temperatures, the protein is unstable and ceases to function properly.
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
Nucleic acid thermodynamics is the study of how temperature affects the nucleic acid structure of double-stranded DNA (dsDNA). The melting temperature (T m) is defined as the temperature at which half of the DNA strands are in the random coil or single-stranded (ssDNA) state. T m depends on the length of the DNA molecule and its specific ...
Cdc7 is highly conserved – related proteins have been identified in frogs and humans. DNA replication is inhibited when Cdc7 homologs are inhibited with antibodies in frog or human cells. It is not known whether CDKs and Cdc7 just regulate protein assembly at origins, or whether they directly activate components of the pre-initiation complex. [6]
Proteins perform a number of critical functions as enzymes, structural proteins or hormones. Protein synthesis is a very similar process for both prokaryotes and eukaryotes but there are some distinct differences. [1] Protein synthesis can be divided broadly into two phases: transcription and translation.
Heat shock proteins induced by the HSR can help prevent protein aggregation that is associated with common neurodegenerative diseases such as Alzheimer's, Huntington's, or Parkinson's disease. [8] The diagram depicts actions taken when a stress is introduced to the cell. Stress will induce HSF-1 and cause proteins to misfold.
Complete replication fork assembly and activation only occurs on a small subset of replication origins. All eukaryotes possess many more replication origins than strictly needed during one cycle of DNA replication. [5] Redundant origins may increase the flexibility of DNA replication, allowing cells to control the rate of DNA synthesis and ...
Protein anabolism is the process by which proteins are formed from amino acids. It relies on five processes: amino acid synthesis, transcription, translation, post translational modifications, and protein folding. Proteins are made from amino acids. In humans, some amino acids can be synthesized using already existing intermediates. These amino ...