Search results
Results from the WOW.Com Content Network
A pie chart (or a circle chart) is a circular statistical graphic which is divided into slices to illustrate numerical proportion. In a pie chart, the arc length of each slice (and consequently its central angle and area ) is proportional to the quantity it represents.
The general equation for a circle with a center at (,) and radius a is + =. This can be simplified in various ways, to conform to more specific cases, such as the equation r ( φ ) = a {\displaystyle r(\varphi )=a} for a circle with a center at the pole and radius a .
Since C = 2πr, the circumference of a unit circle is 2π. In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. [1] Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane.
Equivalently, it is the set of vertices with eccentricity equal to the graph's radius. [3] Thus vertices in the center (central points) minimize the maximal distance from other points in the graph. This is also known as the vertex 1-center problem and can be extended to the vertex k-center problem. Finding the center of a graph is useful in ...
Cartesian coordinate system with a circle of radius 2 centered at the origin marked in red. The equation of a circle is (x − a) 2 + (y − b) 2 = r 2 where a and b are the coordinates of the center (a, b) and r is the radius.
A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter.
A circle of radius 23 drawn by the Bresenham algorithm. In computer graphics, the midpoint circle algorithm is an algorithm used to determine the points needed for rasterizing a circle. It's a generalization of Bresenham's line algorithm. The algorithm can be further generalized to conic sections. [1] [2] [3]
Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that