Search results
Results from the WOW.Com Content Network
A root of a polynomial is a zero of the corresponding polynomial function. [1] The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree , and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically ...
In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f(x) = 0. As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding
Rather, the degree of the zero polynomial is either left explicitly undefined, or defined as negative (either −1 or −∞). [10] The zero polynomial is also unique in that it is the only polynomial in one indeterminate that has an infinite number of roots. The graph of the zero polynomial, f(x) = 0, is the x-axis.
In the polynomial +, any rational root fully reduced should have a numerator that divides 1 and a denominator that divides 2. Hence the only possible rational roots are ±1/2 and ±1; since neither of these equates the polynomial to zero, it has no rational roots.
Also, even with a good approximation, when one evaluates a polynomial at an approximate root, one may get a result that is far to be close to zero. For example, if a polynomial of degree 20 (the degree of Wilkinson's polynomial) has a root close to 10, the derivative of the polynomial at the root may be of the order of ; this implies that an ...
The value of the function at a critical point is a critical value. [1] More specifically, when dealing with functions of a real variable, a critical point, also known as a stationary point, is a point in the domain of the function where the function derivative is equal to zero (or where the function is not differentiable). [2]
In this case a point that is neither a pole nor a zero is viewed as a pole (or zero) of order 0. A meromorphic function may have infinitely many zeros and poles. This is the case for the gamma function (see the image in the infobox), which is meromorphic in the whole complex plane, and has a simple pole at every non-positive integer.
The rate of convergence is distinguished from the number of iterations required to reach a given accuracy. For example, the function f(x) = x 20 − 1 has a root at 1. Since f ′(1) ≠ 0 and f is smooth, it is known that any Newton iteration convergent to 1 will converge quadratically. However, if initialized at 0.5, the first few iterates of ...