Search results
Results from the WOW.Com Content Network
Surface roughness, often shortened to roughness, is a component of surface finish (surface texture). It is quantified by the deviations in the direction of the normal vector of a real surface from its ideal form. If these deviations are large, the surface is rough; if they are small, the surface is smooth.
Micro CT of porous medium: Pores of the porous medium shown as purple color and impermeable porous matrix shown as green-yellow color. Pore structure is a common term employed to characterize the porosity, pore size, pore size distribution, and pore morphology (such as pore shape, surface roughness, and tortuosity of pore channels) of a porous medium.
Many factors contribute to the surface finish in manufacturing. In forming processes, such as molding or metal forming, surface finish of the die determines the surface finish of the workpiece. In machining, the interaction of the cutting edges and the microstructure of the material being cut both contribute to the final surface finish.
Surface modification is the act of modifying the surface of a material by bringing physical, chemical or biological characteristics different from the ones originally found on the surface of a material. [1] This modification is usually made to solid materials, but it is possible to find examples of the modification to the surface of specific ...
Surface metrology is the measurement of small-scale features on surfaces, and is a branch of metrology.Surface primary form, surface fractality, and surface finish (including surface roughness) are the parameters most commonly associated with the field.
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe (inside) diameter. f stands for the Darcy friction factor. Its value depends on the flow's Reynolds number Re and on the pipe's relative roughness ε / D.
Rugosity calculations are commonly used in materials science to characterize surfaces, amongst others, in marine science to characterize seafloor habitats. A common technique to measure seafloor rugosity is Risk's chain-and-tape method [2] but with the advent of underwater photography less invasive quantitative methods have been developed.