enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  3. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectationmaximization...

    In structural engineering, the Structural Identification using Expectation Maximization (STRIDE) [26] algorithm is an output-only method for identifying natural vibration properties of a structural system using sensor data (see Operational Modal Analysis). EM is also used for data clustering.

  4. Mixture model - Wikipedia

    en.wikipedia.org/wiki/Mixture_model

    Matlab code for GMM Implementation using EM algorithm; jMEF: A Java open source library for learning and processing mixtures of exponential families (using duality with Bregman divergences). Includes a Matlab wrapper. Very Fast and clean C implementation of the Expectation Maximization (EM) algorithm for estimating Gaussian Mixture Models (GMMs).

  5. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    Because the minimization over all possible sets of cluster centers is prohibitively complex, the distortion is computed in practice by generating a set of cluster centers using a standard clustering algorithm and computing the distortion using the result. The pseudo-code for the jump method with an input set of p-dimensional data points X is:

  6. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    The parameters of the model, and for =, …,, are typically estimated by maximum likelihood estimation using the expectation-maximization algorithm (EM); see also EM algorithm and GMM model. Bayesian inference is also often used for inference about finite mixture models. [ 2 ]

  7. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    The slow "standard algorithm" for k-means clustering, and its associated expectationmaximization algorithm, is a special case of a Gaussian mixture model, specifically, the limiting case when fixing all covariances to be diagonal, equal and have infinitesimal small variance.

  8. Entropy estimation - Wikipedia

    en.wikipedia.org/wiki/Entropy_estimation

    A useful pdf estimate method is e.g. Gaussian mixture modeling (GMM), where the expectation maximization (EM) algorithm is used to find an ML estimate of a weighted sum of Gaussian pdf's approximating the data pdf.

  9. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    This training algorithm is an instance of the more general expectationmaximization algorithm (EM): the prediction step inside the loop is the E-step of EM, while the re-training of naive Bayes is the M-step.