Search results
Results from the WOW.Com Content Network
Porosimetry is an analytical technique used to determine various quantifiable aspects of a material's porous structure, such as pore diameter, total pore volume, surface area, and bulk and absolute densities. The technique involves the intrusion of a non-wetting liquid (often mercury) at high pressure into a material through the use of a ...
In capillary flow porometry, in opposition to mercury intrusion porosimetry, the wetting liquid enters spontaneously the pores of the sample ensuring a total wetting of the material, and therefore the contact angle of the wetting liquid with the sample is 0 and the previous formula can be simplified as: P= 4*γ/D.
Micro CT of porous medium: Pores of the porous medium shown as purple color and impermeable porous matrix shown as green-yellow color. Pore structure is a common term employed to characterize the porosity, pore size, pore size distribution, and pore morphology (such as pore shape, surface roughness, and tortuosity of pore channels) of a porous medium.
Created Date: 8/30/2012 4:52:52 PM
The form of the Kelvin equation here is not the form in which it appeared in Lord Kelvin's article of 1871. The derivation of the form that appears in this article from Kelvin's original equation was presented by Robert von Helmholtz (son of German physicist Hermann von Helmholtz) in his dissertation of 1885. [2]
However, simple cooling of an all-liquid sample usually leads to a state of non-equilibrium super cooling and only eventual non-equilibrium freezing – to obtain a measurement of the equilibrium freezing event, it is necessary to first cool enough to freeze a sample with excess liquid outside the pores, then warm the sample until the liquid in ...
The report notes that 11.2 million older adults spent over 30% of their income on housing in 2021, and only 36.5% of eligible households received federal housing assistance.
Powder wettability measurement with the Washburn method. In its most general form the Lucas Washburn equation describes the penetration length of a liquid into a capillary pore or tube with time as = (), where is a simplified diffusion coefficient. [4]