enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Category:Machine learning algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Machine_learning...

    Download as PDF; Printable version; ... Pages in category "Machine learning algorithms" ... Logic learning machine; LogitBoost;

  3. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]

  4. Outline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Outline_of_machine_learning

    Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]

  5. Online machine learning - Wikipedia

    en.wikipedia.org/wiki/Online_machine_learning

    Online learning is a common technique used in areas of machine learning where it is computationally infeasible to train over the entire dataset, requiring the need of out-of-core algorithms. It is also used in situations where it is necessary for the algorithm to dynamically adapt to new patterns in the data, or when the data itself is ...

  6. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.

  7. No free lunch theorem - Wikipedia

    en.wikipedia.org/wiki/No_free_lunch_theorem

    Wolpert had previously derived no free lunch theorems for machine learning (statistical inference). [ 2 ] In 2005, Wolpert and Macready themselves indicated that the first theorem in their paper "state[s] that any two optimization algorithms are equivalent when their performance is averaged across all possible problems".

  8. Probably approximately correct learning - Wikipedia

    en.wikipedia.org/wiki/Probably_approximately...

    In the interval problem the instance space, , is the set of all bounded intervals in , where denotes the set of all real numbers. A concept is a subset c ⊂ X {\displaystyle c\subset X} . One concept is the set of all patterns of bits in X = { 0 , 1 } n {\displaystyle X=\{0,1\}^{n}} that encode a picture of the letter "P".

  9. Multiplicative weight update method - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_Weight...

    In this case, player allocates higher weight to the actions that had a better outcome and choose his strategy relying on these weights. In machine learning, Littlestone applied the earliest form of the multiplicative weights update rule in his famous winnow algorithm, which is similar to Minsky and Papert's earlier perceptron learning algorithm ...