enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).

  3. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    Cluster analysis, a fundamental task in data mining and machine learning, involves grouping a set of data points into clusters based on their similarity. k-means clustering is a popular algorithm used for partitioning data into k clusters, where each cluster is represented by its centroid.

  4. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    In data mining and statistics, hierarchical clustering (also called hierarchical cluster analysis or HCA) is a method of cluster analysis that seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall into two categories:

  5. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    The actual data mining task is the semi-automatic or automatic analysis of massive quantities of data to extract previously unknown, interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection), and dependencies (association rule mining, sequential pattern mining).

  6. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Model-based clustering was first invented in 1950 by Paul Lazarsfeld for clustering multivariate discrete data, in the form of the latent class model. [ 41 ] In 1959, Lazarsfeld gave a lecture on latent structure analysis at the University of California-Berkeley, where John H. Wolfe was an M.A. student.

  7. DBSCAN - Wikipedia

    en.wikipedia.org/wiki/DBSCAN

    DBSCAN is not entirely deterministic: border points that are reachable from more than one cluster can be part of either cluster, depending on the order the data are processed. For most data sets and domains, this situation does not arise often and has little impact on the clustering result: [ 4 ] both on core points and noise points, DBSCAN is ...

  8. Clustering - Wikipedia

    en.wikipedia.org/wiki/Clustering

    Computer cluster, the technique of linking many computers together to act like a single computer; Data cluster, an allocation of contiguous storage in databases and file systems; Cluster analysis, the statistical task of grouping a set of objects in such a way that objects in the same group are placed closer together (such as the k-means ...

  9. Similarity measure - Wikipedia

    en.wikipedia.org/wiki/Similarity_measure

    Clustering or Cluster analysis is a data mining technique that is used to discover patterns in data by grouping similar objects together. It involves partitioning a set of data points into groups or clusters based on their similarities. One of the fundamental aspects of clustering is how to measure similarity between data points.