Search results
Results from the WOW.Com Content Network
The distance between any two points on the real line is the absolute value of the numerical difference of their coordinates, their absolute difference. Thus if p {\displaystyle p} and q {\displaystyle q} are two points on the real line, then the distance between them is given by: [ 1 ]
The denominator of this expression is the distance between P 1 and P 2. The numerator is twice the area of the triangle with its vertices at the three points, (x 0,y 0), P 1 and P 2. See: Area of a triangle § Using coordinates.
A composition algebra (,,) consists of an algebra over a field, an involution, and a quadratic form = called the "norm". The characteristic feature of composition algebras is the homomorphism property of N {\displaystyle N} : for the product w z {\displaystyle wz} of two elements w {\displaystyle w} and z {\displaystyle z} of the composition ...
The absolute difference of two real numbers and is given by | |, the absolute value of their difference. It describes the distance on the real line between the points corresponding to x {\displaystyle x} and y {\displaystyle y} , and is a special case of the L p distance for all 1 ≤ p ≤ ∞ {\displaystyle 1\leq p\leq \infty } .
Points in the polar coordinate system with pole O and polar axis L. In green, the point with radial coordinate 3 and angular coordinate 60 degrees or (3, 60°). In blue, the point (4, 210°). In mathematics, the polar coordinate system specifies a given point in a plane by using a distance and an angle as its two coordinates. These are
Given the two red points, the blue line is the linear interpolant between the points, and the value y at x may be found by linear interpolation.. In mathematics, linear interpolation is a method of curve fitting using linear polynomials to construct new data points within the range of a discrete set of known data points.
For example, given a = f(x) = a 0 x 0 + a 1 x 1 + ··· and b = g(x) = b 0 x 0 + b 1 x 1 + ···, the product ab is a specific value of W(x) = f(x)g(x). One may easily find points along W(x) at small values of x, and interpolation based on those points will yield the terms of W(x) and the specific product ab. As fomulated in Karatsuba ...
The dot product of two vectors can be defined as the product of the magnitudes of the two vectors and the cosine of the angle between the two vectors. Thus, a ⋅ b = | a | | b | cos θ {\displaystyle \mathbf {a} \cdot \mathbf {b} =|\mathbf {a} |\,|\mathbf {b} |\cos \theta } Alternatively, it is defined as the product of the projection of ...