enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Baryon asymmetry - Wikipedia

    en.wikipedia.org/wiki/Baryon_asymmetry

    Neither the standard model of particle physics nor the theory of general relativity provides a known explanation for why this should be so, and it is a natural assumption that the universe is neutral with all conserved charges. [3] The Big Bang should have produced equal amounts of matter and antimatter. Since this does not seem to have been ...

  3. Baryogenesis - Wikipedia

    en.wikipedia.org/wiki/Baryogenesis

    Once the universe expanded and cooled to a critical temperature of approximately 2 × 10 12 K, [3] quarks combined into normal matter and antimatter and proceeded to annihilate up to the small initial asymmetry of about one part in five billion, leaving the matter around us. [3]

  4. Here’s why the universe has more matter than antimatter - AOL

    www.aol.com/why-universe-more-matter-antimatter...

    All the particles that make up the matter around us, such electrons and protons, have antimatter versions which are nearly identical, but with mirrored properties such as the opposite electric charge.

  5. Flatness problem - Wikipedia

    en.wikipedia.org/wiki/Flatness_problem

    The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0). The spacetime of ...

  6. Right again, Einstein! Study shows how antimatter ... - AOL

    www.aol.com/news/again-einstein-study-shows...

    There appears to be very little antimatter - and on Earth almost none. ... Scientists remain puzzled by antimatter's scarcity in the observable universe. For instance, there is no indication of ...

  7. Astroparticle physics - Wikipedia

    en.wikipedia.org/wiki/Astroparticle_physics

    Another question for astroparticle physicists is why is there so much more matter than antimatter in the universe today. Baryogenesis is the term for the hypothetical processes that produced the unequal numbers of baryons and antibaryons in the early universe, which is why the universe is made of matter today, and not antimatter. [6]

  8. Missing baryon problem - Wikipedia

    en.wikipedia.org/wiki/Missing_baryon_problem

    The distribution of known baryons in the universe. [14] The census of known baryons in the universe tallied to around 60% of total baryons until the resolution of the missing baryon problem. This is in distinction from composition of the entire universe which includes dark energy and dark matter of which baryonic matter composes only 5%. [19]

  9. Leptogenesis - Wikipedia

    en.wikipedia.org/wiki/Leptogenesis

    Why does the observable universe have more matter than antimatter? (more unsolved problems in physics) In physical cosmology , leptogenesis is the generic term for hypothetical physical processes that produced an asymmetry between leptons and antileptons in the very early universe , resulting in the present-day dominance of leptons over ...