enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Work hardening - Wikipedia

    en.wikipedia.org/wiki/Work_hardening

    Hollomon's equation is a power law relationship between the stress and the amount of plastic strain: [10] σ = K ϵ p n {\displaystyle \sigma =K\epsilon _{p}^{n}\,\!} where σ is the stress, K is the strength index or strength coefficient, ε p is the plastic strain and n is the strain hardening exponent .

  3. Yield (engineering) - Wikipedia

    en.wikipedia.org/wiki/Yield_(engineering)

    The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable load in a mechanical component, since it represents the upper limit to forces that can be applied without producing ...

  4. Hardness - Wikipedia

    en.wikipedia.org/wiki/Hardness

    The yield strength is the point at which elastic deformation gives way to plastic deformation. Deformation in the plastic range is non-linear, and is described by the stress-strain curve. This response produces the observed properties of scratch and indentation hardness, as described and measured in materials science.

  5. Ramberg–Osgood relationship - Wikipedia

    en.wikipedia.org/wiki/Ramberg–Osgood_relationship

    The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening), showing a smooth elastic-plastic transition.

  6. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    The stress of the flat region is defined as the lower yield point (LYP) and results from the formation and propagation of Lüders bands. Explicitly, heterogeneous plastic deformation forms bands at the upper yield strength and these bands carrying with deformation spread along the sample at the lower yield strength.

  7. Strengthening mechanisms of materials - Wikipedia

    en.wikipedia.org/wiki/Strengthening_mechanisms...

    This relationship does not apply when dislocations form cell structures. When cell structures are formed, the average cell size controls the strengthening effect. [6] Increasing the dislocation density increases the yield strength which results in a higher shear stress required to move the dislocations.

  8. Flow stress - Wikipedia

    en.wikipedia.org/wiki/Flow_stress

    Where is flow stress, is a strength coefficient, is the plastic strain, and is the strain hardening exponent. Note that this is an empirical relation and does not model the relation at other temperatures or strain-rates (though the behavior may be similar).

  9. Strain hardening exponent - Wikipedia

    en.wikipedia.org/wiki/Strain_hardening_exponent

    In one study, strain hardening exponent values extracted from tensile data from 58 steel pipes from natural gas pipelines were found to range from 0.08 to 0.25, [1] with the lower end of the range dominated by high-strength low alloy steels and the upper end of the range mostly normalized steels.