Search results
Results from the WOW.Com Content Network
Hollomon's equation is a power law relationship between the stress and the amount of plastic strain: [10] σ = K ϵ p n {\displaystyle \sigma =K\epsilon _{p}^{n}\,\!} where σ is the stress, K is the strength index or strength coefficient, ε p is the plastic strain and n is the strain hardening exponent .
The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable load in a mechanical component, since it represents the upper limit to forces that can be applied without producing ...
The yield strength is the point at which elastic deformation gives way to plastic deformation. Deformation in the plastic range is non-linear, and is described by the stress-strain curve. This response produces the observed properties of scratch and indentation hardness, as described and measured in materials science.
The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening), showing a smooth elastic-plastic transition.
The stress of the flat region is defined as the lower yield point (LYP) and results from the formation and propagation of Lüders bands. Explicitly, heterogeneous plastic deformation forms bands at the upper yield strength and these bands carrying with deformation spread along the sample at the lower yield strength.
This relationship does not apply when dislocations form cell structures. When cell structures are formed, the average cell size controls the strengthening effect. [6] Increasing the dislocation density increases the yield strength which results in a higher shear stress required to move the dislocations.
Where is flow stress, is a strength coefficient, is the plastic strain, and is the strain hardening exponent. Note that this is an empirical relation and does not model the relation at other temperatures or strain-rates (though the behavior may be similar).
In one study, strain hardening exponent values extracted from tensile data from 58 steel pipes from natural gas pipelines were found to range from 0.08 to 0.25, [1] with the lower end of the range dominated by high-strength low alloy steels and the upper end of the range mostly normalized steels.