Search results
Results from the WOW.Com Content Network
The coefficients for the linear regression specify the slope and intercept of the line that joins the two group means, as illustrated in the graph. The intercept is 2 and the slope is 4. Compare the result from the linear regression to the result from the t-test. From the t-test, the difference between the group means is 6-2=4.
Bayesian linear regression applies the framework of Bayesian statistics to linear regression. (See also Bayesian multivariate linear regression .) In particular, the regression coefficients β are assumed to be random variables with a specified prior distribution .
An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...
In linear regression, the model specification is that the dependent variable, is a linear combination of the parameters (but need not be linear in the independent variables). For example, in simple linear regression for modeling n {\displaystyle n} data points there is one independent variable: x i {\displaystyle x_{i}} , and two parameters, β ...
The null hypothesis of no explanatory value of the estimated regression is tested using an F-test. If the calculated F-value is found to be large enough to exceed its critical value for the pre-chosen level of significance, the null hypothesis is rejected and the alternative hypothesis, that the regression has explanatory power, is accepted ...
The hypothesis that a data set in a regression analysis follows the simpler of two proposed linear models that are nested within each other. Multiple-comparison testing is conducted using needed data in already completed F-test, if F-test leads to rejection of null hypothesis and the factor under study has an impact on the dependent variable. [1]
The general linear model is a generalization of multiple linear regression to the case of more than one dependent variable. If Y, B, and U were column vectors, the matrix equation above would represent multiple linear regression. Hypothesis tests with the general linear model can be made in two ways: multivariate or as several independent ...
Linear regression; Simple regression ... Such measures can be used in statistical hypothesis testing, ... (2003), Nonparametric Goodness-of-Fit Testing Under Gaussian ...