enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    The integer n is called the exponent and the real number m is called the significand or mantissa. [1] The term "mantissa" can be ambiguous where logarithms are involved, because it is also the traditional name of the fractional part of the common logarithm. If the number is negative then a minus sign precedes m, as in

  3. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    The way in which the significand (including its sign) and exponent are stored in a computer is implementation-dependent. The common IEEE formats are described in detail later and elsewhere, but as an example, in the binary single-precision (32-bit) floating-point representation, p = 24 {\displaystyle p=24} , and so the significand is a string ...

  4. Significand - Wikipedia

    en.wikipedia.org/wiki/Significand

    The significand [1] (also coefficient, [1] sometimes argument, [2] or more ambiguously mantissa, [3] fraction, [4] [5] [nb 1] or characteristic [6] [3]) is the first (left) part of a number in scientific notation or related concepts in floating-point representation, consisting of its significant digits. For negative numbers, it does not include ...

  5. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    The sign bit determines the sign of the number, which is the sign of the significand as well. "1" stands for negative. The exponent field is an 8-bit unsigned integer from 0 to 255, in biased form: a value of 127 represents the actual exponent zero.

  6. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    Sign bit: 1 bit; Exponent: 11 bits; Significand precision: 53 bits (52 explicitly stored) The sign bit determines the sign of the number (including when this number is zero, which is signed). The exponent field is an 11-bit unsigned integer from 0 to 2047, in biased form: an exponent value of 1023 represents the actual zero. Exponents range ...

  7. 96 Shortcuts for Accents and Symbols: A Cheat Sheet

    www.aol.com/96-shortcuts-accents-symbols-cheat...

    Ever wondered how to add an accent, or where the degree symbol is? These printable keyboard shortcut symbols will make your life so much easier. The post 96 Shortcuts for Accents and Symbols: A ...

  8. Signed number representations - Wikipedia

    en.wikipedia.org/wiki/Signed_number_representations

    Biased representations are now primarily used for the exponent of floating-point numbers. The IEEE 754 floating-point standard defines the exponent field of a single-precision (32-bit) number as an 8-bit excess-127 field. The double-precision (64-bit) exponent field is an 11-bit excess-1023 field; see exponent bias.

  9. Significant figures - Wikipedia

    en.wikipedia.org/wiki/Significant_figures

    The part of the representation that contains the significant figures (1.30 or 1.23) is known as the significand or mantissa. The digits in the base and exponent ( 10 3 or 10 −2 ) are considered exact numbers so for these digits, significant figures are irrelevant.