Search results
Results from the WOW.Com Content Network
The number 123.45 can be represented as a decimal floating-point number with the integer 12345 as the significand and a 10 −2 power term, also called characteristics, [11] [12] [13] where −2 is the exponent (and 10 is the base). Its value is given by the following arithmetic: 123.45 = 12345 × 10 −2.
The integer n is called the exponent and the real number m is called the significand or mantissa. [1] The term "mantissa" can be ambiguous where logarithms are involved, because it is also the traditional name of the fractional part of the common logarithm. If the number is negative then a minus sign precedes m, as in
On a typical computer system, a double-precision (64-bit) binary floating-point number has a coefficient of 53 bits (including 1 implied bit), an exponent of 11 bits, and 1 sign bit. Since 2 10 = 1024, the complete range of the positive normal floating-point numbers in this format is from 2 −1022 ≈ 2 × 10 −308 to approximately 2 1024 ≈ ...
Finite numbers, which can be described by three integers: s = a sign (zero or one), c = a significand (or coefficient) having no more than p digits when written in base b (i.e., an integer in the range through 0 to b p − 1), and q = an exponent such that emin ≤ q + p − 1 ≤ emax.
The sign bit determines the sign of the number, which is the sign of the significand as well. "1" stands for negative. The exponent field is an 8-bit unsigned integer from 0 to 255, in biased form: a value of 127 represents the actual exponent zero.
Sign bit: 1 bit; Exponent: 11 bits; Significand precision: 53 bits (52 explicitly stored) The sign bit determines the sign of the number (including when this number is zero, which is signed). The exponent field is an 11-bit unsigned integer from 0 to 2047, in biased form: an exponent value of 1023 represents the actual zero. Exponents range ...
Like the binary floating-point formats, the number is divided into a sign, an exponent, and a significand. Unlike binary floating-point, numbers are not necessarily normalized; values with few significant digits have multiple possible representations: 1×10 2 =0.1×10 3 =0.01×10 4, etc. When the significand is zero, the exponent can be any ...
Several earlier 16-bit floating point formats have existed including that of Hitachi's HD61810 DSP of 1982 (a 4-bit exponent and a 12-bit mantissa), [2] Thomas J. Scott's WIF of 1991 (5 exponent bits, 10 mantissa bits) [3] and the 3dfx Voodoo Graphics processor of 1995 (same as Hitachi). [4]