enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Problem of Apollonius - Wikipedia

    en.wikipedia.org/wiki/Problem_of_Apollonius

    René Descartes gave a formula relating the radii of the solution circles and the given circles, now known as Descartes' theorem. Solving Apollonius' problem iteratively in this case leads to the Apollonian gasket, which is one of the earliest fractals to be described in print, and is important in number theory via Ford circles and the Hardy ...

  3. Circle theorem - Wikipedia

    en.wikipedia.org/wiki/Circle_theorem

    Circle theorem may refer to: Any of many theorems related to the circle; often taught as a group in GCSE mathematics. These include: Inscribed angle theorem. Thales' theorem, if A, B and C are points on a circle where the line AC is a diameter of the circle, then the angle ∠ABC is a right angle. Alternate segment theorem. Ptolemy's theorem.

  4. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.

  5. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that

  6. Mathematical problem - Wikipedia

    en.wikipedia.org/wiki/Mathematical_problem

    Such questions are usually more difficult to solve than regular mathematical exercises like "5 − 3", even if one knows the mathematics required to solve the problem. Known as word problems , they are used in mathematics education to teach students to connect real-world situations to the abstract language of mathematics.

  7. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    In Euclidean plane geometry, a tangent line to a circle is a line that touches the circle at exactly one point, never entering the circle's interior. Tangent lines to circles form the subject of several theorems , and play an important role in many geometrical constructions and proofs .

  8. Clifford's circle theorems - Wikipedia

    en.wikipedia.org/wiki/Clifford's_circle_theorems

    The second theorem considers five circles in general position passing through a single point M. Each subset of four circles defines a new point P according to the first theorem. Then these five points all lie on a single circle C. The third theorem considers six circles in general position that pass through a single point M. Each subset of five ...

  9. Dinostratus - Wikipedia

    en.wikipedia.org/wiki/Dinostratus

    To solve this problem, Dinostratus made use of the trisectrix of Hippias, for which he proved a special property (Dinostratus' theorem) that allowed him the squaring of the circle. Due to his work the trisectrix later became known as the quadratrix of Dinostratus as well. [ 1 ]