Search results
Results from the WOW.Com Content Network
Mercury is one of four terrestrial planets in the Solar System, which means it is a rocky body like Earth. It is the smallest planet in the Solar System, with an equatorial radius of 2,439.7 kilometres (1,516.0 mi). [4] Mercury is also smaller—albeit more massive—than the largest natural satellites in the Solar System, Ganymede and Titan.
WD 1145+017 b (also known by its EPIC designation EPIC 201563164.01), is a confirmed exoasteroid or minor planet orbiting around and being vaporized by the white dwarf star WD 1145+017, likely one of multiple such objects around this star. [1] It was discovered by NASA's Kepler spacecraft on its "Second Light" mission.
Van Maanen's star is also the nearest solitary white dwarf [4] First white dwarf with a planet WD B1620−26: 2003 PSR B1620-26 b (planet) This planet is a circumbinary planet, which circles both stars in the PSR B1620-26 system [5] [6] First singular white dwarf with a planet WD 1145+017: 2015 WD 1145+017 b: Planet is extremely small and is ...
White dwarf - Wikipedia
The supposed planetesimal, WD 1145+017 b, [13] with a 4.5 hour orbit, is being ripped apart by the star and is a remnant of the former planetary system that the star hosted before becoming a white dwarf. [8] [9] It is the first observation of a planetary object being shredded by a white dwarf. Several other large pieces have been seen in orbit ...
For the giant planets, the "radius" is defined as the distance from the center at which the atmosphere reaches 1 bar of atmospheric pressure. [ 11 ] Because Sedna and 2002 MS 4 have no known moons, directly determining their mass is impossible without sending a probe (estimated to be from 1.7x10 21 to 6.1×10 21 kg for Sedna [ 12 ] ).
The second resolution, 5B, defined dwarf planets as a subtype of planet, as Stern had originally intended, distinguished from the other eight that were to be called "classical planets". Under this arrangement, the twelve planets of the rejected proposal were to be preserved in a distinction between eight classical planets and four dwarf planets.
About 6% of white dwarfs show infrared excess due to a disk around a white dwarf. [66] In the past only a relative small sample of white dwarf disks was known. [67] Due to advances in white dwarf detection (e.g. with Gaia or LAMOST) and improvement of WISE infrared catalogs with unWISE/CatWISE, the number has increased to hundreds of candidates.