Search results
Results from the WOW.Com Content Network
Diffusion current is a current in a semiconductor caused by the diffusion of charge carriers (electrons and/or electron holes). This is the current which is due to the transport of charges occurring because of non-uniform concentration of charged particles in a semiconductor.
Drift current is the electric current caused by particles getting pulled by an electric field. The term is most commonly used in the context of electrons and holes in semiconductors, although the same concept also applies to metals, electrolytes, and so on.
The following image shows change in excess carriers being generated (green:electrons and purple:holes) with increasing light intensity (generation rate /cm 3) at the center of an intrinsic semiconductor bar. Electrons have higher diffusion constant than holes leading to fewer excess electrons at the center as compared to holes.
This diffusion current is governed by Fick's law: = where: F is flux. D e is the diffusion coefficient or diffusivity; is the concentration gradient of electrons; The diffusion coefficient for a charge carrier is related to its mobility by the Einstein relation.
In a semiconductor with an arbitrary density of states, i.e. a relation of the form = between the density of holes or electrons and the corresponding quasi Fermi level (or electrochemical potential) , the Einstein relation is [11] [12] =, where is the electrical mobility (see § Proof of the general case for a proof of this relation).
A diffused junction transistor is a transistor formed by diffusing dopants into a semiconductor substrate. The diffusion process was developed later than the alloy-junction and grown junction processes for making bipolar junction transistors (BJTs). Bell Labs developed the first prototype diffused junction bipolar transistors in 1954. [1]
This process generates current, referred to as diffusion current. Diffusion current can also be described by Fick's first law = /, where J is the diffusion current density (amount of substance) per unit area per unit time, n (for ideal mixtures) is the electron density, x is the position [length].
The saturation current (or scale current), more accurately the reverse saturation current, is the part of the reverse current in a semiconductor diode caused by diffusion of minority carriers from the neutral regions to the depletion region. This current is almost independent of the reverse voltage. [1]