enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Slip (materials science) - Wikipedia

    en.wikipedia.org/wiki/Slip_(materials_science)

    In materials science, slip is the large displacement of one part of a crystal relative to another part along crystallographic planes and directions. [1] Slip occurs by the passage of dislocations on close/packed planes, which are planes containing the greatest number of atoms per area and in close-packed directions (most

  3. Crystal twinning - Wikipedia

    en.wikipedia.org/wiki/Crystal_twinning

    Twinning and slip are competitive mechanisms for crystal deformation. Each mechanism is dominant in certain crystal systems and under certain conditions. [23] In fcc metals, slip is almost always dominant because the stress required is far less than twinning stress. [24] Twinning can occur by cooperative displacement of atoms along the face of ...

  4. Stacking-fault energy - Wikipedia

    en.wikipedia.org/wiki/Stacking-fault_energy

    The two primary methods of deformation in metals are slip and twinning. Slip occurs by dislocation glide of either screw or edge dislocations within a slip plane. Slip is by far the most common mechanism. Twinning is less common but readily occurs under some circumstances. Twinning occurs when there are not enough slip systems to accommodate ...

  5. Plasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Plasticity_(physics)

    Plasticity in a crystal of pure metal is primarily caused by two modes of deformation in the crystal lattice: slip and twinning. Slip is a shear deformation which moves the atoms through many interatomic distances relative to their initial positions.

  6. Dislocation - Wikipedia

    en.wikipedia.org/wiki/Dislocation

    Therefore, compressive stress in the direction perpendicular to the half plane promotes positive climb, while tensile stress promotes negative climb. This is one main difference between slip and climb, since slip is caused by only shear stress. One additional difference between dislocation slip and climb is the temperature dependence.

  7. Crystal plasticity - Wikipedia

    en.wikipedia.org/wiki/Crystal_plasticity

    Crystal plasticity assumes that any deformation that is applied to a material is accommodated by the process of slip, where dislocation motion occurs on a slip system. Further, Schmid's law is assumed to be a valid, where a given slip system is said to be active when the resolved shear stress along the slip system exceeds the critical resolved ...

  8. Deformation mechanism - Wikipedia

    en.wikipedia.org/wiki/Deformation_mechanism

    Sample deformation mechanism map for a hypothetical material. Here there are three main regions: plasticity, power law creep, and diffusional flow. A deformation mechanism map is a way of representing the dominant deformation mechanism in a material loaded under a given set of conditions. The technique is applicable to all crystalline materials ...

  9. Schmid's law - Wikipedia

    en.wikipedia.org/wiki/Schmid's_Law

    In materials science, Schmid's law (also Schmid factor [a]) describes the slip plane and the slip direction of a stressed material, which can resolve the most shear stress. ...