Search results
Results from the WOW.Com Content Network
The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled).
When the model has been estimated over all available data with none held back, the MSPE of the model over the entire population of mostly unobserved data can be estimated as follows.
It is remarkable that the sum of squares of the residuals and the sample mean can be shown to be independent of each other, using, e.g. Basu's theorem.That fact, and the normal and chi-squared distributions given above form the basis of calculations involving the t-statistic:
Normalizing the RMSD facilitates the comparison between datasets or models with different scales. Though there is no consistent means of normalization in the literature, common choices are the mean or the range (defined as the maximum value minus the minimum value) of the measured data: [4]
The general regression model with n observations and k explanators, the first of which is a constant unit vector whose coefficient is the regression intercept, is = + where y is an n × 1 vector of dependent variable observations, each column of the n × k matrix X is a vector of observations on one of the k explanators, is a k × 1 vector of true coefficients, and e is an n× 1 vector of the ...
In mathematics and its applications, the mean square is normally defined as the arithmetic mean of the squares of a set of numbers or of a random variable. [ 1 ] It may also be defined as the arithmetic mean of the squares of the deviations between a set of numbers and a reference value (e.g., may be a mean or an assumed mean of the data), [ 2 ...
Standard method like Gauss elimination can be used to solve the matrix equation for .A more numerically stable method is provided by QR decomposition method. Since the matrix is a symmetric positive definite matrix, can be solved twice as fast with the Cholesky decomposition, while for large sparse systems conjugate gradient method is more effective.
In statistics, expected mean squares (EMS) are the expected values of certain statistics arising in partitions of sums of squares in the analysis of variance (ANOVA). They can be used for ascertaining which statistic should appear in the denominator in an F-test for testing a null hypothesis that a particular effect is absent.