Search results
Results from the WOW.Com Content Network
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise. The substances are listed in alphabetical order.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
This Wikipedia page provides a comprehensive list of boiling and freezing points for various solvents.
The solubility of a specific solute in a specific solvent is generally expressed as the concentration of a saturated solution of the two. [1] Any of the several ways of expressing concentration of solutions can be used, such as the mass, volume, or amount in moles of the solute for a specific mass, volume, or mole amount of the solvent or of the solution.
Most Regents exams consist of a single three-hour testing period. The exception is the Earth Science exam, which consists of a 41-minute (approximate) laboratory component, known as the Earth Science lab practical, given around two weeks prior to the three-hour exam. The Regents exams are administered in January, June, and August.
The solvation shell number of a dissolved electrolyte can be linked to the statistical component of the activity coefficient of the electrolyte and to the ratio between the apparent molar volume of a dissolved electrolyte in a concentrated solution and the molar volume of the solvent (water): [clarification needed]
A sodium ion solvated by water molecules. Solvation describes the interaction of a solvent with dissolved molecules. Both ionized and uncharged molecules interact strongly with a solvent, and the strength and nature of this interaction influence many properties of the solute, including solubility, reactivity, and color, as well as influencing the properties of the solvent such as its viscosity ...
The chart seems to put soluble and insoluble substances side by side. Not being a comparison chart, imo that's not a good presentation. An alternative chart puts the group of substances on either the soluble or insoluble side, and lists the exception on the other side. --Der yck C. 13:49, 17 January 2007 (UTC)