Search results
Results from the WOW.Com Content Network
The symbol was first seen in print without the vinculum (the horizontal "bar" over the numbers inside the radical symbol) in the year 1525 in Die Coss by Christoff Rudolff, a German mathematician. In 1637 Descartes was the first to unite the German radical sign √ with the vinculum to create the radical symbol in common use today. [3]
Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 5 2 (5 squared). In mathematics, a square root of a number x is a number y such that =; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1]
Radical expression involving roots, also known as an nth root; Radical symbol (√), used to indicate the square root and other roots; Radical of an algebraic group, a concept in algebraic group theory; Radical of an ideal, an important concept in abstract algebra; Radical of a ring, an ideal of "bad" elements of a ring
In number theory, the radical of a positive integer n is defined as the product of the distinct prime numbers dividing n. Each prime factor of n occurs exactly once as a factor of this product: r a d ( n ) = ∏ p ∣ n p prime p {\displaystyle \displaystyle \mathrm {rad} (n)=\prod _{\scriptstyle p\mid n \atop p{\text{ prime}}}p}
radical symbol (for square root) 1637 (with the vinculum above the radicand) René Descartes (La Géométrie) % percent sign: 1650 (approx.) unknown
An unresolved root, especially one using the radical symbol, is sometimes referred to as a surd [2] or a radical. [3] Any expression containing a radical, whether it is a square root, a cube root, or a higher root, is called a radical expression , and if it contains no transcendental functions or transcendental numbers it is called an algebraic ...
SEE ALSO: Mother horrified after learning what heart symbol on daughter's stuffed toy really meant A FBI document obtained by Wikileaks details the symbols and logos used by pedophiles to identify ...
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.