Search results
Results from the WOW.Com Content Network
An illustrative example is the effect of catalysts to speed the decomposition of hydrogen peroxide into water and oxygen: . 2 H 2 O 2 → 2 H 2 O + O 2. This reaction proceeds because the reaction products are more stable than the starting compound, but this decomposition is so slow that hydrogen peroxide solutions are commercially available.
The graph for these equations is a sigmoid curve (specifically a logistic function), which is typical for autocatalytic reactions: these chemical reactions proceed slowly at the start (the induction period) because there is little catalyst present, the rate of reaction increases progressively as the reaction proceeds as the amount of catalyst ...
In specific acid catalysis, protonated solvent is the catalyst. The reaction rate is proportional to the concentration of the protonated solvent molecules SH +. [6] The acid catalyst itself (AH) only contributes to the rate acceleration by shifting the chemical equilibrium between solvent S and AH in favor of the SH + species. This kind of ...
Modern FCC catalysts are fine powders with a bulk density of 0.80 to 0.96 g/cm 3 and having a particle size distribution ranging from 10 to 150 μm and an average particle size of 60 to 100 μm. [12] [13] The design and operation of an FCC unit is largely dependent upon the chemical and physical properties of the catalyst. The desirable ...
Examples include the Friedel-Crafts reaction, the aldol reaction, and various pericyclic processes that proceed slowly at room temperature, such as the Diels-Alder reaction and the ene reaction. In addition to accelerating the reactions, Lewis acid catalysts are able to impose regioselectivity and stereoselectivity in many cases.
Typical catalysts are platinum, and redox-active oxides of iron, vanadium, and molybdenum. In many cases, catalysts are modified with a host of additives or promoters that enhance rates or selectivities. Important homogeneous catalysts for the oxidation of organic compounds are carboxylates of cobalt, iron, and manganese
Reactions on surfaces are reactions in which at least one of the steps of the reaction mechanism is the adsorption of one or more reactants. The mechanisms for these reactions, and the rate equations are of extreme importance for heterogeneous catalysis.
Paul Sabatier (1854-1941) winner of the Nobel Prize in Chemistry in 1912 and discoverer of the reaction in 1897. The Sabatier reaction or Sabatier process produces methane and water from a reaction of hydrogen with carbon dioxide at elevated temperatures (optimally 300–400 °C) and pressures (perhaps 3 MPa [1]) in the presence of a nickel catalyst.