Search results
Results from the WOW.Com Content Network
where is the slope and is the y-intercept. Because this is a function of only x {\displaystyle x} , it can't represent a vertical line. Therefore, it would be useful to make this equation written as a function of both x {\displaystyle x} and y {\displaystyle y} , to be able to draw lines at any angle.
The simplest is the slope-intercept form: = +, from which one can immediately see the slope a and the initial value () =, which is the y-intercept of the graph = (). Given a slope a and one known value () =, we write the point-slope form:
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
Using this form, vertical lines correspond to equations with b = 0. One can further suppose either c = 1 or c = 0, by dividing everything by c if it is not zero. There are many variant ways to write the equation of a line which can all be converted from one to another by algebraic manipulation. The above form is sometimes called the standard form.
In two dimensions, the equation for non-vertical lines is often given in the slope-intercept form: = + where: m is the slope or gradient of the line. b is the y-intercept of the line. x is the independent variable of the function y = f(x).
A non-vertical line can be defined by its slope m, and its y-intercept y 0 (the y coordinate of its intersection with the y-axis). In this case, its linear equation can be written = +. If, moreover, the line is not horizontal, it can be defined by its slope and its x-intercept x 0. In this case, its equation can be written
It’s been five months, and Isabella's parents say she still hasn’t gotten her Medicaid back even though her brother — same family, same income — never lost his.
Specifically, a straight line on a log–log plot containing points (x 0, F 0) and (x 1, F 1) will have the function: = (/) (/), Of course, the inverse is true too: any function of the form = will have a straight line as its log–log graph representation, where the slope of the line is m.