enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Protein structure prediction - Wikipedia

    en.wikipedia.org/wiki/Protein_structure_prediction

    An alpha-helix with hydrogen bonds (yellow dots) The α-helix is the most abundant type of secondary structure in proteins. The α-helix has 3.6 amino acids per turn with an H-bond formed between every fourth residue; the average length is 10 amino acids (3 turns) or 10 Å but varies from 5 to 40 (1.5 to 11 turns).

  3. Secondary structure prediction - Wikipedia

    en.wikipedia.org/wiki/Secondary_structure_prediction

    For proteins, this means predicting the formation of protein structures such as alpha helices and beta strands, while for nucleic acids it means predicting the formation of nucleic acid structures like helixes and stem-loop structures through base pairing and base stacking interactions. Secondary structure prediction can refer to:

  4. List of protein secondary structure prediction programs

    en.wikipedia.org/wiki/List_of_protein_secondary...

    List of notable protein secondary structure prediction programs. Name Method description Type Link Initial release RaptorX-SS8

  5. GOR method - Wikipedia

    en.wikipedia.org/wiki/GOR_method

    The GOR method analyzes sequences to predict alpha helix, beta sheet, turn, or random coil secondary structure at each position based on 17-amino-acid sequence windows. The original description of the method included four scoring matrices of size 17×20, where the columns correspond to the log-odds score, which reflects the probability of finding a given amino acid at each position in the 17 ...

  6. PSIPRED - Wikipedia

    en.wikipedia.org/wiki/PSIPRED

    The three final output nodes deliver a score for each secondary structure element for the central position of the window. Using the secondary structure with the highest score, PSIPRED generates the protein prediction. [9] The Q3 value is the fraction of residues predicted correctly in the secondary structure states, namely helix, strand, and ...

  7. Chou–Fasman method - Wikipedia

    en.wikipedia.org/wiki/Chou–Fasman_method

    The Chou–Fasman method is an empirical technique for the prediction of secondary structures in proteins, originally developed in the 1970s by Peter Y. Chou and Gerald D. Fasman. [ 1 ] [ 2 ] [ 3 ] The method is based on analyses of the relative frequencies of each amino acid in alpha helices , beta sheets , and turns based on known protein ...

  8. DSSP (algorithm) - Wikipedia

    en.wikipedia.org/wiki/DSSP_(algorithm)

    The DSSP algorithm is the standard method for assigning secondary structure to the amino acids of a protein, given the atomic-resolution coordinates of the protein. The abbreviation is only mentioned once in the 1983 paper describing this algorithm, [2] where it is the name of the Pascal program that implements the algorithm Define Secondary Structure of Proteins.

  9. I-TASSER - Wikipedia

    en.wikipedia.org/wiki/I-TASSER

    I-TASSER is a template-based method for protein structure and function prediction. [1] The pipeline consists of six consecutive steps: 1, Secondary structure prediction by PSSpred; 2, Template detection by LOMETS [6] 3, Fragment structure assembly using replica-exchange Monte Carlo simulation [7]