Search results
Results from the WOW.Com Content Network
An example of this lexical phenomenon in Spanglish is the emergence of new verbs when the productive Spanish verb-making suffix -ear is attached to an English verb. For example, the Spanish verb for "to eat lunch" ( almorzar in standard Spanish) becomes lonchear (occasionally lunchear ).
The problem was there was no way to find the location of the center of oscillation in a real pendulum accurately. It could theoretically be calculated from the shape of the pendulum if the metal parts had uniform density, but the metallurgical quality and mathematical abilities of the time didn't allow the calculation to be made accurately.
The time for one complete cycle, a left swing and a right swing, is called the period. The period depends on the length of the pendulum and also to a slight degree on the amplitude, the width of the pendulum's swing. The regular motion of pendulums was used for timekeeping and was the world's most accurate timekeeping technology until the 1930s ...
The real period is, of course, the time it takes the pendulum to go through one full cycle. Paul Appell pointed out a physical interpretation of the imaginary period: [ 16 ] if θ 0 is the maximum angle of one pendulum and 180° − θ 0 is the maximum angle of another, then the real period of each is the magnitude of the imaginary period of ...
The time for one complete cycle, a left swing and a right swing, is called the period. The period depends on the length of the pendulum, and also to a slight degree on its weight distribution (the moment of inertia about its own center of mass) and the amplitude (width) of the pendulum's swing.
The green trace shows the path of the pendulum bob over the ground (a rotating reference frame), while the bob moves in the corresponding vertical planes. The actual plane of swing appears to rotate relative to the Earth: sitting astride the bob like a swing, Coriolis fictitious force disappears: observer is in a "free rotational" reference.
The mathematics of oscillation deals with the quantification of the amount that a sequence or function tends to move between extremes. There are several related notions: oscillation of a sequence of real numbers, oscillation of a real-valued function at a point, and oscillation of a function on an interval (or open set).
Consider a real waveform consisting of superimposed frequencies, expressed in a set as ratios to a fundamental frequency, f: F = 1 ⁄ f [f 1 f 2 f 3... f N] where all non-zero elements ≥1 and at least one of the elements of the set is 1. To find the period, T, first find the least common denominator of all the elements in the set.