enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain).

  3. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    The Fourier transform translates between convolution and multiplication of functions. ... the scaling property of the Fourier transform may be seen as saying: ...

  4. Multiplier (Fourier analysis) - Wikipedia

    en.wikipedia.org/wiki/Multiplier_(Fourier_analysis)

    One can view the multiplier operator T as the composition of three operators, namely the Fourier transform, the operation of pointwise multiplication by m, and then the inverse Fourier transform. Equivalently, T is the conjugation of the pointwise multiplication operator by the Fourier transform. Thus one can think of multiplier operators as ...

  5. DFT matrix - Wikipedia

    en.wikipedia.org/wiki/DFT_matrix

    In this case, if we make a very large matrix with complex exponentials in the rows (i.e., cosine real parts and sine imaginary parts), and increase the resolution without bound, we approach the kernel of the Fredholm integral equation of the 2nd kind, namely the Fourier operator that defines the continuous Fourier transform. A rectangular ...

  6. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    Fourier transform (bottom) is zero except at discrete points. The inverse transform is a sum of sinusoids called Fourier series. Center-right: Original function is discretized (multiplied by a Dirac comb) (top). Its Fourier transform (bottom) is a periodic summation of the original transform.

  7. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    The discrete version of the Fourier transform (see below) can be evaluated quickly on computers using fast Fourier transform (FFT) algorithms. [8] In forensics, laboratory infrared spectrophotometers use Fourier transform analysis for measuring the wavelengths of light at which a material will absorb in the infrared spectrum.

  8. Multidimensional transform - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_transform

    The 2D Z-transform, similar to the Z-transform, is used in multidimensional signal processing to relate a two-dimensional discrete-time signal to the complex frequency domain in which the 2D surface in 4D space that the Fourier transform lies on is known as the unit surface or unit bicircle.

  9. Discrete-time Fourier transform - Wikipedia

    en.wikipedia.org/.../Discrete-time_Fourier_transform

    The lower right corner depicts samples of the DTFT that are computed by a discrete Fourier transform (DFT). The utility of the DTFT is rooted in the Poisson summation formula, which tells us that the periodic function represented by the Fourier series is a periodic summation of the continuous Fourier transform: [b]