Search results
Results from the WOW.Com Content Network
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, Boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. [1]
In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually {true, false}, {0,1} or {-1,1}). [1] [2] Alternative names are switching function, used especially in older computer science literature, [3] [4] and truth function (or logical function), used in logic.
In logic, a truth function [1] is a function that accepts truth values as input and produces a unique truth value as output. In other words: the input and output of a truth function are all truth values; a truth function will always output exactly one truth value, and inputting the same truth value(s) will always output the same truth value.
In mathematics and mathematical logic, Boolean algebra is a branch of algebra.It differs from elementary algebra in two ways. First, the values of the variables are the truth values true and false, usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers.
In these truth tables, the unknown state can be thought of as neither true nor false in Kleene logic, or thought of as both true and false in Priest logic. The difference lies in the definition of tautologies. Where Kleene logic's only designated truth value is T, Priest logic's designated truth values are both T and U.
The idea behind the logic alphabet is to first represent the sixteen binary truth functions in the form of a square matrix rather than the more familiar tabular format seen in the table above, and then to assign a letter shape to each of these matrices. Letter shapes are derived from the distribution of Ts in the matrix.
To find the value of the Boolean function for a given assignment of (Boolean) values to the variables, we start at the reference edge, which points to the BDD's root, and follow the path that is defined by the given variable values (following a low edge if the variable that labels a node equals FALSE, and following the high edge if the variable ...
This set of two values is also called the Boolean domain. Corresponding semantics of logical connectives are truth functions, whose values are expressed in the form of truth tables. Logical biconditional becomes the equality binary relation, and negation becomes a bijection which permutes true and false.