Search results
Results from the WOW.Com Content Network
This is a list of statistical procedures which can be used for the analysis of categorical data, also known as data on the nominal scale and as categorical variables.
Tukey defined data analysis in 1961 as: "Procedures for analyzing data, techniques for interpreting the results of such procedures, ways of planning the gathering of data to make its analysis easier, more precise or more accurate, and all the machinery and results of (mathematical) statistics which apply to analyzing data."
Data classification can be viewed as a multitude of labels that are used to define the type of data, especially on confidentiality and integrity issues. [1] Data classification is typically a manual process; however, there are tools that can help gather information about the data. [2] Data sensitivity levels are often proposed to be considered. [2]
An algorithm that implements classification, especially in a concrete implementation, is known as a classifier. The term "classifier" sometimes also refers to the mathematical function, implemented by a classification algorithm, that maps input data to a category. Terminology across fields is quite varied.
For quantitative analysis, data is coded usually into measured and recorded as nominal or ordinal variables.. Questionnaire data can be pre-coded (process of assigning codes to expected answers on designed questionnaire), field-coded (process of assigning codes as soon as data is available, usually during fieldwork), post-coded (coding of open questions on completed questionnaires) or office ...
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
Pragmatic classification (and functional [40] and teleological classification) is the classification of items which emphasis the goals, purposes, consequences, [41] interests, values and politics of classification. It is, for example, classifying animals into wild animals, pests, domesticated animals and pets.
In information science and ontology, a classification scheme is an arrangement of classes or groups of classes. The activity of developing the schemes bears similarity to taxonomy, but with perhaps a more theoretical bent, as a single classification scheme can be applied over a wide semantic spectrum while taxonomies tend to be devoted to a single topic.