Search results
Results from the WOW.Com Content Network
The extension to multiple and/or vector-valued predictor variables (denoted with a capital X) is known as multiple linear regression, also known as multivariable linear regression (not to be confused with multivariate linear regression). [10] Multiple linear regression is a generalization of simple linear regression to the case of more than one ...
It is particularly useful in analysis of variance (a special case of regression analysis), and in constructing simultaneous confidence bands for regressions involving basis functions. Scheffé's method is a single-step multiple comparison procedure which applies to the set of estimates of all possible contrasts among the factor level means, not ...
The basic idea of logistic regression is to use the mechanism already developed for linear regression by modeling the probability p i using a linear predictor function, i.e. a linear combination of the explanatory variables and a set of regression coefficients that are specific to the model at hand but the same for all trials.
In linear regression, the model specification is that the dependent variable, is a linear combination of the parameters (but need not be linear in the independent variables). For example, in simple linear regression for modeling n {\displaystyle n} data points there is one independent variable: x i {\displaystyle x_{i}} , and two parameters, β ...
The general linear model or general multivariate regression model is a compact way of simultaneously writing several multiple linear regression models. In that sense it is not a separate statistical linear model. The various multiple linear regression models may be compactly written as [1]
Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression. [1]
The classical, frequentists linear least squares solution is to simply estimate the matrix of regression coefficients ^ using the Moore-Penrose pseudoinverse: ^ = (). To obtain the Bayesian solution, we need to specify the conditional likelihood and then find the appropriate conjugate prior.
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.