enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    The extension to multiple and/or vector-valued predictor variables (denoted with a capital X) is known as multiple linear regression, also known as multivariable linear regression (not to be confused with multivariate linear regression). [10] Multiple linear regression is a generalization of simple linear regression to the case of more than one ...

  3. General linear model - Wikipedia

    en.wikipedia.org/wiki/General_linear_model

    The general linear model or general multivariate regression model is a compact way of simultaneously writing several multiple linear regression models. In that sense it is not a separate statistical linear model. The various multiple linear regression models may be compactly written as [1]

  4. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    Simple linear regression and multiple regression using least squares can be done in some spreadsheet applications and on some calculators. While many statistical software packages can perform various types of nonparametric and robust regression, these methods are less standardized.

  5. Commonality analysis - Wikipedia

    en.wikipedia.org/wiki/Commonality_analysis

    Commonality analysis is a statistical technique within multiple linear regression that decomposes a model's R 2 statistic (i.e., explained variance) by all independent variables on a dependent variable in a multiple linear regression model into commonality coefficients.

  6. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression. [1]

  7. Multivariate adaptive regression spline - Wikipedia

    en.wikipedia.org/wiki/Multivariate_adaptive...

    In statistics, multivariate adaptive regression splines (MARS) is a form of regression analysis introduced by Jerome H. Friedman in 1991. [1] It is a non-parametric regression technique and can be seen as an extension of linear models that automatically models nonlinearities and interactions between variables.

  8. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/.../Multinomial_logistic_regression

    The formulation of binary logistic regression as a log-linear model can be directly extended to multi-way regression. That is, we model the logarithm of the probability of seeing a given output using the linear predictor as well as an additional normalization factor, the logarithm of the partition function:

  9. Partial least squares regression - Wikipedia

    en.wikipedia.org/wiki/Partial_least_squares...

    Partial least squares (PLS) regression is a statistical method that bears some relation to principal components regression and is a reduced rank regression [1]; instead of finding hyperplanes of maximum variance between the response and independent variables, it finds a linear regression model by projecting the predicted variables and the observable variables to a new space of maximum ...