Search results
Results from the WOW.Com Content Network
Schematic of quantities for capstan equation An example of holding capstans and a powered capstan used to raise sails on a tall ship. The capstan equation [1] or belt friction equation, also known as Euler–Eytelwein formula [2] (after Leonhard Euler and Johann Albert Eytelwein), [3] relates the hold-force to the load-force if a flexible line ...
Simpson's rules are used to calculate the volume of lifeboats, [6] and by surveyors to calculate the volume of sludge in a ship's oil tanks. For instance, in the latter, Simpson's 3rd rule is used to find the volume between two co-ordinates. To calculate the entire area / volume, Simpson's first rule is used. [7]
Coefficients [5] help compare hull forms as well: Block coefficient (C b) is the volume (V) divided by the L WL × B WL × T WL. If you draw a box around the submerged part of the ship, it is the ratio of the box volume occupied by the ship. It gives a sense of how much of the block defined by the L WL, beam (B) & draft (T) is filled by the hull.
For thousands of years ship designers and builders of sailing vessels used rules of thumb based on the midship-section area to size the sails for a given vessel. The hull form and sail plan for the clipper ships, for example, evolved from experience, not from theory. It was not until the advent of steam power and the construction of large iron ...
Builder's Old Measurement (BOM, bm, OM, and o.m.) is the method used in England from approximately 1650 to 1849 for calculating the cargo capacity of a ship.It is a volumetric measurement of cubic capacity.
If the reduced form model is estimated using empirical data, obtaining estimated values for the coefficients , some of the structural parameters can be recovered: By combining the two reduced form equations to eliminate Z, the structural coefficients of the supply side model (and ) can be derived:
Sails allow progress of a sailing craft to windward, thanks to their ability to generate lift (and the craft's ability to resist the lateral forces that result). Each sail configuration has a characteristic coefficient of lift and attendant coefficient of drag, which can be determined experimentally and calculated theoretically.
The strength of ships is a topic of key interest to naval architects and shipbuilders. Ships which are built too strong are heavy, slow, and cost extra money to build and operate since they weigh more, whilst ships which are built too weakly suffer from minor hull damage and in some extreme cases catastrophic failure and sinking.