Ads
related to: class 5 decimal word problem exampleseducation.com has been visited by 100K+ users in the past month
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Guided Lessons
Learn new concepts step-by-step
with colorful guided lessons.
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- Digital Games
Search results
Results from the WOW.Com Content Network
The word problem for an algebra is then to determine, given two expressions (words) involving the generators and operations, whether they represent the same element of the algebra modulo the identities. The word problems for groups and semigroups can be phrased as word problems for algebras. [1]
For functions in certain classes, the problem of determining: whether two functions are equal, known as the zero-equivalence problem (see Richardson's theorem); [4] the zeroes of a function; whether the indefinite integral of a function is also in the class. [5] Of course, some subclasses of these problems are decidable.
In the example from "Double rounding" section, rounding 9.46 to one decimal gives 9.4, which rounding to integer in turn gives 9. With binary arithmetic, this rounding is also called "round to odd" (not to be confused with "round half to odd"). For example, when rounding to 1/4 (0.01 in binary), x = 2.0 ⇒ result is 2 (10.00 in binary)
Monetary values are commonly expressed as decimal fractions with denominator 100, i.e., with two decimals, for example $3.75. However, as noted above, in pre-decimal British currency, shillings and pence were often given the form (but not the meaning) of a fraction, as, for example, "3/6" (read "three and six") meaning 3 shillings and 6 pence ...
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
The set of rational numbers is not complete. For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of the decimal expansion of the positive square root of 2, is Cauchy but it does not converge to a rational number (in the real numbers, in contrast, it converges to the positive square root of 2).
A real number can be expressed by a finite number of decimal digits only if it is rational and its fractional part has a denominator whose prime factors are 2 or 5 or both, because these are the prime factors of 10, the base of the decimal system. Thus, for example, one half is 0.5, one fifth is 0.2, one-tenth is 0.1, and one fiftieth is 0.02.
Example: the decimal number () = (¯) can be rearranged into + ⏟ … Since the 53rd bit to the right of the binary point is a 1 and is followed by other nonzero bits, the round-to-nearest rule requires rounding up, that is, add 1 bit to the 52nd bit.
Ads
related to: class 5 decimal word problem exampleseducation.com has been visited by 100K+ users in the past month