Search results
Results from the WOW.Com Content Network
String homomorphisms are monoid morphisms on the free monoid, preserving the empty string and the binary operation of string concatenation. Given a language , the set () is called the homomorphic image of . The inverse homomorphic image of a string is defined as
Definition <string>.rpartition(separator) Searches for the separator from right-to-left within the string then returns the sub-string before the separator; the separator; then the sub-string after the separator. Description Splits the given string by the right-most separator and returns the three substrings that together make the original.
A string datatype is a datatype modeled on the idea of a formal string. Strings are such an important and useful datatype that they are implemented in nearly every programming language. In some languages they are available as primitive types and in others as composite types.
COBOL uses the STRING statement to concatenate string variables. MATLAB and Octave use the syntax "[x y]" to concatenate x and y. Visual Basic and Visual Basic .NET can also use the "+" sign but at the risk of ambiguity if a string representing a number and a number are together. Microsoft Excel allows both "&" and the function "=CONCATENATE(X,Y)".
A snippet of Java code with keywords highlighted in bold blue font. The syntax of Java is the set of rules defining how a Java program is written and interpreted. The syntax is mostly derived from C and C++. Unlike C++, Java has no global functions or variables, but has data members which are also regarded as global variables.
The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it. The figure on the right is the suffix tree for the strings "ABAB", "BABA" and "ABBA", padded with unique string ...
The strings over an alphabet, with the concatenation operation, form an associative algebraic structure with identity element the null string—a free monoid. Sets of strings with concatenation and alternation form a semiring, with concatenation (*) distributing over alternation (+); 0 is the empty set and 1 the set consisting of just the null ...
A string is a prefix [1] of a string if there exists a string such that =. A proper prefix of a string is not equal to the string itself; [2] some sources [3] in addition restrict a proper prefix to be non-empty. A prefix can be seen as a special case of a substring.