Search results
Results from the WOW.Com Content Network
The standard pow function and the integer exponent pown function define 0 0, 1 ∞, and ∞ 0 as 1. The powr function defines all three indeterminate forms as invalid operations and so returns NaN. Real operations with complex results, for example: The square root of a negative number. The logarithm of a negative number.
Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... Composite number: A positive integer that can be factored into a product of smaller positive integers. Every integer greater than one is either prime or composite.
Some real numbers have decimal expansions that eventually get into loops, endlessly repeating a sequence of one or more digits: 1 ⁄ 3 = 0.33333... 1 ⁄ 7 = 0.142857142857... 1318 ⁄ 185 = 7.1243243243... Every time this happens the number is still a rational number (i.e. can alternatively be represented as a ratio of an integer and a ...
3. Subfactorial: if n is a positive integer, !n is the number of derangements of a set of n elements, and is read as "the subfactorial of n". * Many different uses in mathematics; see Asterisk § Mathematics. | 1. Divisibility: if m and n are two integers, means that m divides n evenly. 2.
In number theory and combinatorics, a partition of a non-negative integer n, also called an integer partition, is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. (If order matters, the sum becomes a composition.)
A primitive recursive function takes a fixed number of arguments, each a natural number (nonnegative integer: {0, 1, 2, ...}), and returns a natural number. If it takes n arguments it is called n-ary. The basic primitive recursive functions are given by these axioms:
The values (), …, of the partition function (1, 2, 3, 5, 7, 11, 15, and 22) can be determined by counting the Young diagrams for the partitions of the numbers from 1 to 8. In number theory, the partition function p(n) represents the number of possible partitions of a non-negative integer n.
Bijective numeration is any numeral system in which every non-negative integer can be represented in exactly one way using a finite string of digits.The name refers to the bijection (i.e. one-to-one correspondence) that exists in this case between the set of non-negative integers and the set of finite strings using a finite set of symbols (the "digits").