Search results
Results from the WOW.Com Content Network
If the dependent variable is referred to as an "explained variable" then the term "predictor variable" is preferred by some authors for the independent variable. [22] An example is provided by the analysis of trend in sea level by Woodworth (1987). Here the dependent variable (and variable of most interest) was the annual mean sea level at a ...
The response variable may be non-continuous ("limited" to lie on some subset of the real line). For binary (zero or one) variables, if analysis proceeds with least-squares linear regression, the model is called the linear probability model. Nonlinear models for binary dependent variables include the probit and logit model.
The same is true for intervening variables (a variable in between the supposed cause (X) and the effect (Y)), and anteceding variables (a variable prior to the supposed cause (X) that is the true cause). When a third variable is involved and has not been controlled for, the relation is said to be a zero order relationship. In most practical ...
In statistics, the two-way analysis of variance (ANOVA) is an extension of the one-way ANOVA that examines the influence of two different categorical independent variables on one continuous dependent variable. The two-way ANOVA not only aims at assessing the main effect of each independent variable but also if there is any interaction between them.
ANCOVA evaluates whether the means of a dependent variable (DV) are equal across levels of one or more categorical independent variables (IV) and across one or more continuous variables. For example, the categorical variable(s) might describe treatment and the continuous variable(s) might be covariates (CV)'s, typically nuisance variables; or ...
Interaction effect of education and ideology on concern about sea level rise. In statistics, an interaction may arise when considering the relationship among three or more variables, and describes a situation in which the effect of one causal variable on an outcome depends on the state of a second causal variable (that is, when effects of the two causes are not additive).
This figure is an example of a repeated measures design that could be analyzed using a rANOVA (repeated measures ANOVA). The independent variable is the time (Levels: Time 1, Time 2, Time 3, Time 4) that someone took the measure, and the dependent variable is the happiness measure score.
The information given by a correlation coefficient is not enough to define the dependence structure between random variables. The correlation coefficient completely defines the dependence structure only in very particular cases, for example when the distribution is a multivariate normal distribution. (See diagram above.)