Search results
Results from the WOW.Com Content Network
The vertex of a parabola is the place where it turns; hence, it is also called the turning point. If the quadratic function is in vertex form, the vertex is (h, k). Using the method of completing the square, one can turn the standard form = + + into
In algebraic geometry, the parabola is generalized by the rational normal curves, which have coordinates (x, x 2, x 3, ..., x n); the standard parabola is the case n = 2, and the case n = 3 is known as the twisted cubic. A further generalization is given by the Veronese variety, when there is more than one input variable.
In standard form the parabola will always pass through the origin. For a rectangular or equilateral hyperbola, one whose asymptotes are perpendicular, there is an alternative standard form in which the asymptotes are the coordinate axes and the line x = y is the principal axis.
On a parabola, the sole vertex lies on the axis of symmetry and in a quadratic of the form: a x 2 + b x + c {\displaystyle ax^{2}+bx+c\,\!} it can be found by completing the square or by differentiation . [ 2 ]
In this position, the hyperbolic paraboloid opens downward along the x-axis and upward along the y-axis (that is, the parabola in the plane x = 0 opens upward and the parabola in the plane y = 0 opens downward). Any paraboloid (elliptic or hyperbolic) is a translation surface, as it can be generated by a moving parabola directed by a second ...
The location and size of the parabola, and how it opens, depend on the values of a, b, and c. If a > 0, the parabola has a minimum point and opens upward. If a < 0, the parabola has a maximum point and opens downward. The extreme point of the parabola, whether minimum or maximum, corresponds to its vertex.
The associated bilinear form of a quadratic form q is defined by (,) = ((+) ()) = =. Thus, b q is a symmetric bilinear form over K with matrix A . Conversely, any symmetric bilinear form b defines a quadratic form q ( x ) = b ( x , x ) , {\displaystyle q(x)=b(x,x),} and these two processes are the inverses of each other.
Given a quadratic polynomial of the form + the numbers h and k may be interpreted as the Cartesian coordinates of the vertex (or stationary point) of the parabola. That is, h is the x -coordinate of the axis of symmetry (i.e. the axis of symmetry has equation x = h ), and k is the minimum value (or maximum value, if a < 0) of the quadratic ...