enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Solar constant - Wikipedia

    en.wikipedia.org/wiki/Solar_constant

    Abbot showed that one of Langley's corrections was erroneously applied. Abbot's results varied between 1.89 and 2.22 calories (1.318 to 1.548 kW/m 2), a variation that appeared to be due to the Sun and not the Earth's atmosphere. [7] In 1954 the solar constant was evaluated as 2.00 cal/min/cm 2 ± 2%. [8] Current results are about 2.5 percent ...

  3. Radiation pressure - Wikipedia

    en.wikipedia.org/wiki/Radiation_pressure

    Solar radiation pressure on objects near the Earth may be calculated using the Sun's irradiance at 1 AU, known as the solar constant, or G SC, whose value is set at 1361 W/m 2 as of 2011. [17] All stars have a spectral energy distribution that depends on their surface temperature. The distribution is approximately that of black-body radiation.

  4. Solar irradiance - Wikipedia

    en.wikipedia.org/wiki/Solar_irradiance

    The solar constant is a conventional measure of mean TSI at a distance of one astronomical unit (AU). Direct normal irradiance (DNI), or beam radiation, is measured at the surface of the Earth at a given location with a surface element perpendicular to the Sun direction. [6]

  5. Sun - Wikipedia

    en.wikipedia.org/wiki/Sun

    The solar constant is equal to approximately 1,368 W/m 2 (watts per square meter) at a distance of one astronomical unit (AU) from the Sun (that is, at or near Earth's orbit). [99] Sunlight on the surface of Earth is attenuated by Earth's atmosphere , so that less power arrives at the surface (closer to 1,000 W/m 2 ) in clear conditions when ...

  6. Earth's energy budget - Wikipedia

    en.wikipedia.org/wiki/Earth's_energy_budget

    Of the ~340 W/m 2 of solar radiation received by the Earth, an average of ~77 W/m 2 is reflected back to space by clouds and the atmosphere and ~23 W/m 2 is reflected by the surface albedo, leaving ~240 W/m 2 of solar energy input to the Earth's energy budget. This amount is called the absorbed solar radiation (ASR).

  7. Atmospheric circulation - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_circulation

    As a result, there is a balance of forces acting on the Earth's surface. The horse latitudes are an area of high pressure at about 30° to 35° latitude (north or south) where winds diverge into the adjacent zones of Hadley or Ferrel cells, and which typically have light winds, sunny skies, and little precipitation. [1] [2]

  8. Thermopause - Wikipedia

    en.wikipedia.org/wiki/Thermopause

    The thermopause is the atmospheric boundary of Earth's energy system, located at the top of the thermosphere. [1] The temperature of the thermopause could range from nearly absolute zero to 987.547 °C (1,810 °F).

  9. Albedo - Wikipedia

    en.wikipedia.org/wiki/Albedo

    Earth's average surface temperature due to its albedo and the greenhouse effect is currently about 15 °C (59 °F). If Earth were frozen entirely (and hence be more reflective), the average temperature of the planet would drop below −40 °C (−40 °F). [ 17 ]