Search results
Results from the WOW.Com Content Network
Nash proved that if mixed strategies (where a player chooses probabilities of using various pure strategies) are allowed, then every game with a finite number of players in which each player can choose from finitely many pure strategies has at least one Nash equilibrium, which might be a pure strategy for each player or might be a probability ...
There is a unique pure strategy Nash equilibrium. This equilibrium can be found by iterated elimination of weakly dominated strategies. [4] Intuitively, guessing any number higher than 2/3 of what you expect others to guess on average cannot be part of a Nash equilibrium. The highest possible average that would occur if everyone guessed 100 is ...
Strategies per player: In a game each player chooses from a set of possible actions, known as pure strategies. If the number is the same for all players, it is listed here. Number of pure strategy Nash equilibria: A Nash equilibrium is a set of strategies which represents mutual best responses to the other strategies. In other words, if every ...
However, many games do have pure strategy Nash equilibria (e.g. the Coordination game, the Prisoner's dilemma, the Stag hunt). Further, games can have both pure strategy and mixed strategy equilibria. An easy example is the pure coordination game, where in addition to the pure strategies (A,A) and (B,B) a mixed equilibrium exists in which both ...
A Nash equilibrium is a strategy profile (a strategy profile specifies a strategy for every player, e.g. in the above prisoners' dilemma game (cooperate, defect) specifies that prisoner 1 plays cooperate and prisoner 2 plays defect) in which every strategy played by every agent (agent i) is a best response to every other strategy played by all the other opponents (agents j for every j≠i) .
In game theory, the best response is the strategy (or strategies) which produces the most favorable outcome for a player, taking other players' strategies as given. [1] The concept of a best response is central to John Nash's best-known contribution, the Nash equilibrium, the point at which each player in a game has selected the best response (or one of the best responses) to the other players ...
This theorem is a combination of strategies in which no player can improve their payoff or outcome by changing their strategy, given the strategies of the other players. In other words, a Nash equilibrium is a set of strategies in which each player is doing the best possible, assuming what the others are doing to receive the most optimal ...
Anshelevich et al. studied network design games and showed that a pure strategy Nash equilibrium always exists and the price of stability of this game is at most the nth harmonic number in directed graphs. For undirected graphs Anshelevich and others presented a tight bound on the price of stability of 4/3 for a single source and two players case.