Search results
Results from the WOW.Com Content Network
The average albedo of Earth is about 0.3. [15] This is far higher than for the ocean primarily because of the contribution of clouds. Earth's surface albedo is regularly estimated via Earth observation satellite sensors such as NASA's MODIS instruments on board the Terra and Aqua satellites, and the CERES instrument on the Suomi NPP and JPSS.
Earth was discovered to have a solid inner core distinct from its molten Earth's outer core in 1936, by the Danish seismologist Inge Lehmann's [7] [8] study of seismograms from earthquakes in New Zealand, detected by sensitive seismographs on the Earth's surface. She deduced that the seismic waves reflect off the boundary of the inner core and ...
The transition between the inner core and outer core is located approximately 5,150 km (3,200 mi) beneath Earth's surface. Earth's inner core is the innermost geologic layer of the planet Earth . It is primarily a solid ball with a radius of about 1,220 km (760 mi), which is about 19% of Earth's radius [0.7% of volume] or 70% of the Moon 's radius.
Earth's inner core may be rotating at a slightly higher angular velocity than the remainder of the planet, advancing by 0.1–0.5° per year, although both somewhat higher and much lower rates have also been proposed. [133] The radius of the inner core is about one-fifth of that of Earth. The density increases with depth.
But some P waves, after passing through Earth’s core, emerged in unexpected places — a “shadow zone,” as Lehmann called it — creating anomalies that were impossible to explain. Lehmann ...
Cloud albedo strongly influences the Earth's energy budget, accounting for approximately half of Earth's albedo. [1] [2] Cloud albedo is influenced by the conditions of cloud formation and variations in cloud albedo depend on the total mass of water, the size and shape of the droplets or particles and their distribution in space. [3]
From Wikipedia, the free encyclopedia. Redirect page
The deeper the cores go, the more history they contain — and the icy layers could also solve some of the biggest questions about mysterious eras in Earth’s 4.5 billion-year history. Once upon ...