Search results
Results from the WOW.Com Content Network
Structure of a G-quadruplex. Left: a G-tetrad. Right: an intramolecular G4 complex. [1]: fig1 In molecular biology, G-quadruplex secondary structures (G4) are formed in nucleic acids by sequences that are rich in guanine. [2] They are helical in shape and contain guanine tetrads that can form from one, [3] two [4] or four strands. [5]
This list of protein subcellular localisation prediction tools includes software, databases, and web services that are used for protein subcellular localization prediction. Some tools are included that are commonly used to infer location through predicted structural properties, such as signal peptide or transmembrane helices , and these tools ...
Protein structure prediction This page was last edited on 5 September 2024, at 22:00 (UTC). Text is available under the Creative Commons Attribution-ShareAlike 4. ...
RaptorX is the successor to the RAPTOR protein structure prediction system. RAPTOR was designed and developed by Dr. Jinbo Xu and Dr. Ming Li at the University of Waterloo. RaptorX was designed and developed by a research group led by Prof. Jinbo Xu at the Toyota Technological Institute branch at Chicago.
The GOR method analyzes sequences to predict alpha helix, beta sheet, turn, or random coil secondary structure at each position based on 17-amino-acid sequence windows. The original description of the method included four scoring matrices of size 17×20, where the columns correspond to the log-odds score, which reflects the probability of finding a given amino acid at each position in the 17 ...
The protein structure prediction remains an extremely difficult and unresolved undertaking. The two main problems are the calculation of protein free energy and finding the global minimum of this energy. A protein structure prediction method must explore the space of possible protein structures which is astronomically large.
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
I-TASSER is a template-based method for protein structure and function prediction. [1] The pipeline consists of six consecutive steps: 1, Secondary structure prediction by PSSpred; 2, Template detection by LOMETS [6] 3, Fragment structure assembly using replica-exchange Monte Carlo simulation [7]